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Abstract

We outline a micromechanical approach to the acousto-elastic effect in rock-like composites characterized by mul-
tiple solid constituents and non-dilute concentrations of interconnected pores and cracks.

Estimates of the T-matrix type (known from the theory of stochastic waves) are first transformed from the stiffness
to the compliance domain, so that the (small) strain variation within a single (but interacting) inclusion can be related to
the (small) applied effective stress (rather than strain) variation, via a �non-dilute� K-tensor that depends upon the over-
all properties as well as the (arbitrary) homogeneous reference material and inclusion (particle, cavity) shape/
orientation.

In order to deal with large changes in the applied effective stress under dry conditions, one generally has to integrate
a system of ordinary differential equations (ODE�s) for the evolution of the microstructural variables (crack densities,
porosities, mineral concentrations, aspect ratios of inclusions and correlation functions) under loading.

Under undrained conditions, the (total fluid mass within a representative volume element is conserved) solution to
the single cavity deformation problem can be found from the same system of ODE�s (and initial conditions) as in the
dry case, provided that one replaces dry with saturated (effective compliances) K-tensors depending on second-rank ten-
sors of pore pressure build-up coefficients that can be found from the boundary conditions, in combination with a
higher-order expression for the change in porosity (for each cavity type) and the constitutive relation for the fluid.

Under drained conditions, the (fluid pressure is constant) dry system of ODE�s can still be used, provided that one
replaces (dry with saturated effective compliances) effective with aparent stress variations that depend on the boundary
conditions as well as (small) changes in the dry responses during loading. This use of a fluid inclusion-dependent apar-
ent stress in the dry evolution law is possible since the integrated results are independent of the loading-path, in the
absence of hysteresis.
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An interacting cavity model of wave-induced fluid flow (which is consistent with the quasi-static considerations out-
lined above, as well as the Brown–Korringa relations) will finally be presented, and used to estimate the effects of
undrained and drained hydrostatic loading on the velocity and attenuation spectra of an isotropic reservoir (example),
involving (highly compliant) grain-boundary cracks as well as relatively flat clay-related pores, and more rounded
quartz-related pores.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Attempts to predict changes in the nature and content of pores and cracks in subsurface reservoirs from
repeated seismic measurements during �stressed� times of production have so far been hampered by our
inadequate knowledge of real media (e.g., Carcione, 2001), though some promising results have been ob-
tained on the basis of shear-wave splitting (e.g., Angerer et al., 2002) and simple reflection/substitution
analysis (e.g., Landrø, 2001). When dealing with natural many-body systems, it clearly makes sense to focus
on fractures or cracks (e.g., Zatsepin and Crampin, 1997; Hudson, 2000; Tod, 2002) since even an infini-
tesimally small concentration of these flat cavities (that respond so dramatically to moderately large
changes in the fluid pressure and/or tectonic stresses) may significantly affect the effective stiffness/compli-
ance and permeability tensors. At the same time, it is becoming increasingly clear that one should be careful
in (ignoring correlation functions) treating the individual cracks in isolation from each other and from the
other inclusions (pores, minerals, etc.) making up a real medium (e.g., Jakobsen et al., 2003a,b; Jakobsen
and Hudson, 2003; Jakobsen, 2004a,b).

With applications within time-lapse (4D) seismics in mind, we consider here a new model for the effect of
drained and undrained loading on visco-elastic waves in rock-like composites. The terms �drained� and �un-
drained� refer to boundary conditions of constant pore fluid pressure and mass, respectively (see Hudson,
2000). �Visco-elastic waves� are associated with the phenomenon of wave-induced fluid flow (Hudson et al.,
1996; Jakobsen et al., 2003b; Jakobsen, 2004b). �Rock-like composites� are normally characterized by
multiple solid constituents and non-dilute volume concentrations of interconnected pores and cracks
(e.g., Thomsen, 1985, 1995; Klimentos and McCann, 1990).

The present study [as well as that of Jakobsen (2004b)] is motivated by the fact that the non-solid inclu-
sions within a rock-like composites can interact in two ways: (1) stress interaction (or strain propagation)
associated with Green�s function (Hudson, 1980; Ponte Castaneda and Willis, 1995; Jakobsen et al., 2003a;
Jakobsen and Hudson, 2003) and (2) fluid pressure communication (or wave-induced fluid flow) associated
with stochastic network models (Hudson et al., 1996; Chapman, 2003; Jakobsen et al., 2003b). The effect of
stress interaction becomes increasingly important with increasing volume concentrations, and it is rather
sensitive to the spatial distribution of inclusions (Ponte Castaneda and Willis, 1995; Jakobsen, 2004a).
The effects of pore fluid pressure communication depend on the frequency, but a general theory for this
phenomenon should be consistent with the zero-frequency relations of Brown and Korringa (1975) for
the effect of fluid-substitution (Thomsen, 1985, 1995).

Published theories of the overall properties of rock-like composites (including cracked media) can be di-
vided into five groups: (1) first-order stiffness-based approximations (Hudson, 1980, 1981; Hudson et al.,
1996; Pointer et al., 2000; Chapman, 2003), (2) second-order stiffness-based approximations (based on
the method of smoothing) (Hudson, 1980; Hudson et al., 1996), (3) higher-order stiffness-based approxima-
tions (based on the variational or T-matrix methods) (Ponte Castaneda and Willis, 1995; Jakobsen et al.,
2003a,b; Jakobsen and Hudson, 2003), (4) first-order compliance-based approximations (Sayers and
Kahanov, 1995; Schoenberg and Sayers, 1995; Liu et al., 2000) and (5) higher-order compliance-based
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approximations (Jakobsen, 2004b). The first-order compliance-based approximations contain terms of all
order in the volume concentrations of inclusions, if they are expanded as an infinite series of increasing
inclusion concentrations. The same statement holds for the higher-order stiffness-based approximations,
which take into account the effect of spatial distribution on the basis of two-point statistics.

The first-order stiffness-based approximation is formally valid for crack densities (equant porosities)
smaller than 0.1 (10%), whilst real rocks of interest to the petroleum industry frequently have crack densi-
ties (equant porosities) equal to 0.3 (40%) or even higher (Thomsen, 1985). The second-order stiffness
approximation is known for its prediction of an unphysical increase of effective stiffnessses with increasing
crack density, for crack densities larger than around 0.1 (Jakobsen et al., 2003a). The higher-order stiffness-
based approximations of Jakobsen et al. (2003a,b) appears to work satisfactory at higher crack densities
and equant porosities, but it has not been shown that they do not violate the Brown and Korringa
(1975) relations when the spatial distribution of inclusions are no longer the same for all pairs of interacting
inclusions. Therefore, Jakobsen (2004b) developed a compliance-based interacting inclusion-based model
of wave-induced fluid flow which always has the correct dependency on the saturating fluid (independent
of the spatial distribution of inclusions).

Hudson (2000) developed a theory of drained and undrained loading on visco-elastic waves in a special
class of rock-like composites involving a single solid constituent and dilute volume concentrations of inter-
connected cracks (and, to some degree, pores) which is compatible with the first-order stiffness-based
approximation of Hudson et al. (1996). [This theory was subsequently implemented for various distribu-
tions of crack aspect ratio and orientation by Tod (2002).] The relationship between the present paper
and that of Jakobsen (2004b) is analogous to that between the papers of Hudson (2000) and Hudson
et al. (1996). The main difference is that we have not followed Hudson et al. in assuming that the response
of each individual inclusion is independent of the other inclusions making up the rock-like composite. Since
the present theory (but not that of Hudson et al.) takes into account the non-dilute effects of spatial distri-
bution, one could for example use it to model fractures as clusters of cracks (Liu et al., 2000; Jakobsen,
2004a). For many reasons, therefore, it is clear that we have developed a more general theory for the acou-
sto-elastic effect in rock-like composites.

The outline of this paper is simple. We first provide an explicit formula of the T-matrix type for the effec-
tive stiffness tensor of a rock-like composite (see Jakobsen et al., 2003a; Jakobsen and Hudson, 2003). We
then transform the formula from the stiffness to the compliance domain so that we can estimate the effects
of an applied effective stress (rather than strain). After this, we discuss the evaluation of the microstructure
under loading. Results are then given for quasi-static loading under undrained and drained loading.
Finally, we discuss the anelastic behaviour of seismo-acoustic waves in these structures, on the basis of
the (compliance-based) interacting inclusion model of wave-induced fluid flow developed by Jakobsen
(2004b). The T-matrix approximations for the effective stiffness tensor given in the next section is needed
in order to calculate certain tensors (associated with the responses of the dry inclusions), in the quasi-static
cases of drained and undrained loading as well as the dynamic case of wave-induced fluid flow.
2. Inclusion-based models of rocks

We consider here a general class of rock-like composites with non-dilute concentrations of inclusions,
that are divided into families of inclusions having the same shape/orientation, t-matrices t(n) (defined below
in terms of stiffness fluctuations), and volume concentration v(n), labelled by n = 1,2, . . . ,N. In the frequency
domain [discussed by Carcione (2001)], we may relate the second-rank tensors of (small) stress (dhri) and
strain (dh�i) variations by the linear transformation (called Hooke�s law in the elastic case)
dhri ¼ C� : dh�i; ð1Þ
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where the �:� symbol refers to the double dot product. Here, C* is a fourth-rank tensor of (tangential or
instantaneous) effective stiffnesses that can be evaluated on the basis of the following T-matrix approxima-
tion (Jakobsen et al., 2003a; Jakobsen and Hudson, 2003):
C� ¼ Cð0Þ þ C1 : ðI4 þ C�1
1 : C2Þ�1

; ð2Þ

C1 ¼
XN
r¼1

vðrÞtðrÞ; ð3Þ

C2 ¼
XN
r¼1

XN
s¼1

vðrÞtðrÞ : GðrsÞ
d : tðsÞvðsÞ: ð4Þ
Here C(0) is the stiffness tensor for a homogeneous reference medium which can be (anisotropic) selected
rather arbitrary without violating the mechanical stability criterion; I4 is the identity for fourth-rank ten-
sors; GðrsÞ

d is given by (Appendix A) the strain Green�s function (associated with C(0)) integrated over a char-
acteristic ellipsoid having the same symmetries as p(sjr)(x � x 0) which, in turn, gives the probability density
for finding an inclusion of type s at point x 0 given that there is an inclusion of type r at point x.

The t-matrix for a single inclusion of type r is given by (Jakobsen et al., 2003a)
tðrÞ ¼ ðCðrÞ � Cð0ÞÞ : ½I4 �GðrÞ : ðCðrÞ � Cð0ÞÞ��1
; ð5Þ
where G(r) is a fourth-rank tensor (discussed in Appendix A) depending only on C(0) and the shape/orien-
tation of the rth inclusion type. In the case of a dry cavity, we may formally set C(r) = 0. In the case of a
fully saturated cavity which is not isolated with respect to (wave-induced) fluid flow, the C(r) tensor repre-
sents complex-valued functions of frequency (see Jakobsen et al., 2003b; Jakobsen, 2004b).
3. The response of an interacting inclusion

The T-matrix approximations described above can be rewritten exactly (as suggested by Kailasam et al.,
1997)
C� ¼
XN
r¼0

vðrÞCðrÞ : AðrÞ
� ; ð6Þ
where the �non-dilute� (or interacting) strain concentration tensors of Jakobsen (2004b);
AðrÞ
� ¼ AðrÞ : ½I4 þ C�1

1 : C2��1
; ð7Þ
which are related to the �dilute� (or non-interacting) strain concentration tensors of Eshelby (1957);
AðrÞ ¼ ½I4 �GðrÞ : ðCðrÞ � Cð0Þ��1
; ð8Þ
are such that the strain variation within phase r is related to the applied average strain variation by
d�ðrÞ ¼ AðrÞ
� : dh�i; ð9Þ
and A(0) is such that
XN
r¼0

vðrÞAðrÞ
� ¼ I4: ð10Þ
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The corresponding estimates for the effective compliance tensor
S� ¼ ðC�Þ�1
; ð11Þ
are given exactly (as shown by Hudson, 1991)
S� ¼ Sð0Þ �
XN
r¼1

vðrÞðSð0Þ : CðrÞ � I4Þ : KðrÞ
� ; ð12Þ
where the �non-dilute� K-tensors
KðrÞ
� ¼ AðrÞ

� : S�; ð13Þ

found by combining Eq. (9) with the effective (tangential) stress–strain relation (1), are such that the strain
variation within phase r is related to the applied average stress variation by
d�ðrÞ ¼ KðrÞ
� : dhri: ð14Þ
Eqs. (7) and (13) imply that
KðrÞ
� ¼ KðrÞ þO½v2�; ð15Þ
where v denotes v(r), r = 1, . . . ,N; and
KðrÞ ¼ AðrÞ : Sð0Þ ð16Þ

is the �dilute� K-tensor of Eshelby (1957).
4. Evolving microstructures under loading

When a real medium is subjected to a finite deformation, simplifying assumptions are obviously required
in order to capture the essential features of the complex microstructure under evolution. The first such
assumption will be that the applied effective stress is triaxial with axes coinciding with the symmetry axes
of the generally anisotropic medium. This ensures that (on the average at least) the inclusions do not change
orientation during the deformation process (see Kailasam et al., 1997). The next assumption will be that the
inclusions are ellipsoidal in shape so that they deform into ellipsoids when they are subjected to uniform
loading conditions (Eshelby, 1957), (approximately) even in the presence of non-dilute inclusion concentra-
tions (see Zaidman and Ponte Castaneda, 1996; Kailasam et al., 1997). Finally, it will be assumed that the
evolution of the aspect ratios of the ellipsoidal correlation functions is determined by the average strain
variations in the heterogeneous material as a whole (see Kailasam et al., 1997).

Having identified the most essential microstructural variables, we next write down the corresponding
evolution laws [for the special case of fully aligned spheroidal inclusions (with aspect ratios a(r);
r = 1,2, . . . ,N) that are distributed in space in accordance with two-point correlation functions (having sym-
metries characterized by a set of spheroids with aspect ratios aðrsÞ

d ; r; s ¼ 1; 2; . . . ;NÞ]:
dvðrÞ

vðrÞ
¼ d�ðrÞkk �

XN
s¼1

vðsÞd�ðsÞkk ; ð17Þ

daðrÞ

aðrÞ ¼ d�ðrÞ33 � d�ðrÞ11 ; ð18Þ

daðrsÞ
d

aðrsÞ
d

¼ dh�33i � dh�11i: ð19Þ
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The second term on the right-hand side of Eq. (17) (derived in Appendix B) can be ignored if and only if the
inclusion concentrations are dilute, as discussed (in connection with a less general expression) by Kailasam
et al. (1997). Eqs. (18) and (19) were also discussed by Kailasam et al. (1997), though these authors assumed
the spatial distribution to be the same for all pairs of interacting inclusions, in the sense that the aspect ra-
tios [of the �ellipsoidal� correlation functions, p(sjr)(x � x 0)] aðrsÞ

d ¼ ad for all r and s.
If we for simplicity write
dhri ¼ dP r̂; ð20Þ

where (dP denotes the magnitude of the small variation in the applied effective stress) the components of the
second-rank tensor r̂ are given by r̂pq ¼ �dpq for a hydrostatic stress, r̂pq ¼ �dp3dq3 for a uniaxial stress
along the x3-axis, then we obtain from the above evolution laws [in conjunction with Eqs. (1) and (13)]
a system of ODE�s;
dvðrÞ

dP
¼ vðrÞ KðrÞ

�
� �

kkpq
�
X
s

vðsÞ KðsÞ
�

� �
kkpq

" #
r̂pq; ð21Þ

daðrÞ

dP
¼ aðrÞ KðrÞ

�
� �

33pq
� KðrÞ

�
� �

11pq

h i
r̂pq; ð22Þ

daðrsÞ
d

dP
¼ aðrsÞ

d ½S�
33pq � S�

11pq�r̂pq; ð23Þ
that can be solved by using the Runge–Kutta method.

5. Quasi-static loading under undrained conditions

By linear superposition, the strain variation d�(r) within a cavity of type r that is completely saturated
with fluid under the pressure variation dpf, when subjected to a (small) variation dhri in the effective stress,
is given by (Jakobsen, 2004b)
KðrÞ
� : dhri ¼ K

ðrÞ
d� : ðdhri þ I2dpfÞ � Sð0Þ : I2dpf ; ð24Þ
were KðrÞ
d� obviously refers to the dry response and I2 is the identity for second-rank tensors. The above

superposition is useful because KðrÞ
d� can easily be determined from the following set of equations:
K
ðrÞ
d� ¼ A

ðrÞ
d� : S�

d; ð25Þ

S�
d ¼ ðC�

dÞ
�1
; ð26Þ

C�
d ¼ Cð0Þ þ C1d : ðI4 þ C�1

1d : C2dÞ�1
; ð27Þ

C1d ¼
XN c

r¼1

vðrÞtðrÞd þ
XN

r¼N cþ1

vðrÞtðrÞ; ð28Þ

C2d ¼
XN c

r¼1

XN c

s¼1

vðrÞtðrÞd : G
ðrsÞ
d : t

ðsÞ
d vðsÞ þ

XN c

r¼1

XN
s¼N cþ1

vðrÞtðrÞd : G
ðrsÞ
d : tðsÞvðsÞ þ

XN
r¼N cþ1

XN c

s¼1

vðrÞtðrÞ : GðrsÞ
d : t

ðsÞ
d vðsÞ

þ
XN

r¼N cþ1

XN
s¼N cþ1

vðrÞtðrÞ : GðrsÞ
d : tðsÞvðsÞ; ð29Þ
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t
ðrÞ
d ¼ �Cð0Þ : ½I4 þGðrÞ : Cð0Þ��1

; ð30Þ

A
ðrÞ
d� ¼ A

ðrÞ
d : ½I4 þ C�1

1d : C2d��1
; ð31Þ

A
ðrÞ
d ¼ ½I4 þGðrÞ : Cð0Þ��1

; ð32Þ

corresponding with Eqs. (13), (11), (2)–(5), (7), (8), respectively. [A subscript �d� is used here on all quantities
associated with dry cavities, characterized by vanishing stiffnesses.] In the above equations, Nc denote the
number of cavity types and (N � Nc) obviously refers to the number of solid constituents. The first, second,
third and fourth term on the right-hand side of Eq. (29) is associated with (dry) cavity–cavity interactions,
cavity–solid interactions, solid–cavity interactions, and solid-solid interactions, respectively.

From the linearity of the problem we know that there exists a second-rank tensor B of (Skempton�s) pore
pressure build-up coefficients (see Green and Wang, 1986; Berge et al., 1993), so that
dpf ¼ B : dhri: ð33Þ

By using Eqs. (24) and (33) in conjunction with the fact that dhri is arbitrary, we find that
KðrÞ
� ¼ K

ðrÞ
d� þ ðKðrÞ

d� � Sð0ÞÞ : ðI2 
 BÞ; ð34Þ

where the symbol 
 denotes the dyadic tensor product.

To find B in the case of an undrained quasi-static loading, we require that the total fluid mass mf within
the whole population of Nc (interconnected) cavities is conserved. Thus, if v(r)/qf and ~vðrÞ=~qf are the un-
stressed and stressed porosities/densities then
mf ¼
XN c

r¼1

vðrÞqf ¼
XN c

r¼1

~vðrÞ~qf ; ð35Þ
where, the constitutive relation for the fluid is,
~qf ¼
qf

1� dpf=jf

; ð36Þ
and jf is the fluid bulk modulus. From Eqs. (14) and (24), it follows that
~vðrÞ � vðrÞ

vðrÞ
¼ ðKðrÞ

d� Þuupqðdhrpqi þ dpqdpfÞ � Sð0Þ
uuvvdpf : ð37Þ
Eqs. (33), (35)–(37) imply that
B ¼ �Hs�I2 :
XN c

r¼1

vðrÞKðrÞ
d� ; ð38Þ

Hs� ¼
1

jf

� ðSð0ÞÞuuvv
� 	

/ þ
XN c

r¼1

vðrÞðKðrÞ
d� Þuuvv

" #�1

; ð39Þ
where / is the total porosity. Combining Eqs. (34) and (38), we get
KðnÞ
� ¼ K

ðnÞ
d� � Hs�ðKðnÞ

d� � Sð0ÞÞ : ðI2 
 I2Þ :
XN c

r¼1

vðrÞKðrÞ
d� : ð40Þ
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6. Quasi-static loading under drained conditions

Eq. (24) can be rewritten exactly as
KðrÞ
� : dhri ¼ K

ðrÞ
d� : dhriðrÞa ; ð41Þ
where
dhriðrÞa ¼ dhri þ dpfa
ðrÞ; ð42Þ
and
aðrÞ ¼ ½I2 � ðKðrÞ
d� Þ

�1 : Sð0Þ : I2�: ð43Þ

Here, a(r) is a second-rank tensor of apparent stress-coefficients (see Hudson, 2000) that can be used at non-
dilute inclusion concentrations, in contrast with the work of Zatsepin and Crampin (1997). Since the inte-
grated results are independent of the loading-path (in the absence of hysteresis), we may use (21) and (22) in
connection with the KðrÞ

d� , provided that r̂ ! r̂ðrÞ
a ¼ r̂ þ ðpf=P ÞaðrÞ, where pf and P are the (finite) values of

pore fluid pressure and effective stress we wish to impose.
7. Visco-elastic waves

The propagation of visco-elastic waves in rock-like composites implies a dynamic situation, which must
be consistent with the quasi-static considerations of the previous sections, as well as the (anisotropic
Gassmann) relations of Brown and Korringa (1975) for the (zero frequency) dependence of the elastic com-
pliances of a porous rock on the compressibility of the pore fluid. If and only if the spatial distributions are
taken to be the same for all pairs of interacting inclusions, the standard (stiffness-based) T-matrix approach
to wave-induced fluid flow discussed by Jakobsen et al. (2003b) satisfies these criteria. In the revised (com-
plianced-based) theory of Jakobsen (2004b), however, the (criteria are always satisfied) saturated effective
compliance tensor S* is given in terms of the dry result S�

d by
S� ¼ S�
d � H�L : ðI2 
 I2Þ : L� ixsjfH; ð44Þ

H� ¼ jf ð1� jfS
ð0Þ
uuvvÞRa þ jfRb �

ikukvCuvjf

gfx


 ��1

; ð45Þ

Ra ¼
XN c

r¼1

vðrÞ

1þ ixcðrÞ� s
; ð46Þ

Rb ¼
XN c

r¼1

vðrÞðKðrÞ
d� Þuuvv

1þ ixcðrÞ� s
; ð47Þ

cðrÞ� ¼ 1þ jfðKðrÞ
d� � Sð0ÞÞuuvv; ð48Þ

L ¼
XN c

r¼1

vðrÞ

1þ ixcðrÞ� s
K

ðrÞ
d� ; ð49Þ

H ¼
XN c

r¼1

vðrÞ

1þ ixcðrÞ� s
K

ðrÞ
d� : ðI2 
 I2Þ : KðrÞ

d� : ð50Þ
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Here Cuv is a component of the effective permeability tensor; s is the squirt flow relaxation time constant
[discussed by Jakobsen et al. (2003b)]; gf is the viscosity of the fluid; and ku is a component of the wave
vector. For simplicity, we normally assume that ku = xsu, where x is the angular frequency and su is a com-
ponent of the slowness vector for plane waves in the homogeneous reference medium.
8. Example

The results of Jakobsen et al. (2003b) suggest that clayey sandstones can safely be treated as visco-elastic
composites on the basis of a dual porosity model which is quite similar to that of Xu and White (1995), but
(representing the clay phase in the form of isolated inclusions, within a loading–bearing matrix of quartz)
taking the phenomenon of wave-induced fluid flow into account. In the (generalized) Xu–White model, the
total pore space is assumed to consist of two parts: (1) pores associated with quartz grains and (2) pores
associated with clays. The essential feature of the model is the assumption that the clay-related pores are
significantly flatter than the quartz-related pores. In this study, we follow Jakobsen et al. (2003b) in taking
a(1) = 0.15 and a(2) = 0.027 for the unstressed rock, where a(1) and a(2) are the aspect ratios of the quartz-
and clay-related pores, respectively.

Klimentos and McCann (1990) measured P-wave speeds and attenuations at 1MHz in a suite of clayey
sandstones under (drained conditions) variable confining pressure. At high confining (or differential) pres-
sure, all cracks are probably closed, and this may explain why the uncracked model of Jakobsen et al.
(2003b) worked so well. At lower confining (or differential) pressures, however, some of the flattest cavities
may still be open, and so we generally need to allow for the existence of cracks in these complex porous
media. Jakobsen and Hudson (2003) extended the model of Jakobsen et al. (2003b) to include cracks,
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Fig. 1. Quartz-related pores under stress. Solid and dashed curves correspond with drained and undrained boundary conditions,
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Fig. 2. Clay-related pores under stress. Solid and dashed curves correspond with drained and undrained boundary conditions,
respectively.
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but studied the effects of crack density separately from those of the crack aspect ratio. In this study, we
allowed the aspect ratio to depend upon the crack density via the applied effective stress, under various
boundary conditions.

Figs. 1–3 show the aspect ratios and porosities of the various cavities within our clayey sandstone model.
Clearly, it is the cracks that represent the most compliant part of the pore space. However, we can also see a
significant pressure-induced change in the geometry of the clay-related pores. The quartz-related pores (and
even more so, the clay particles) are relatively non-compliant. Fig. 4 shows the pore fluid pressure as a func-
tion of confining pressure. In the undrained case, the pore fluid pressure is determined by the applied con-
fining pressure via the B tensor in Eq. (33). In the drained case, however, the solid curves merely show what
path we have taken in the stress–pressure plane, in order to reach our final destination; that is, a confining
pressure of 22MPa and a pore fluid pressure of 4.4MPa. The acousto-elastic results (for two different con-
fining pressures) in Fig. 5 suggest that it is very important to take into account the (fluid dynamical) bound-
ary conditions when trying to predict the effects of an applied effective stress on the seismic wave
characteristics of real media like dirty sandstone reservoirs. The initial crack density (aspect ratio) was
0.15 (0.001), and the cracks closed completely in the case of drained loading only.
9. Concluding remarks

We have approached the acousto-elastic effect in real media from the viewpoint of a revised T-matrix
approach to rock physics, in the sense that the response of a single inclusion (or crack) under an applied
effective stress was allowed to be modified by its interaction with other inclusions. We have seen that often
takes a significantly smaller stress to close an interacting crack than an isolated one, and the response of a
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single crack is very sensitive to the (drained versus undrained) boundary conditions. The fact that we can
now deal the non-linear behaviour of non-dilute inclusion concentrations appears to be rather important,
but our expression for Skempton�s pore pressure build-up tensor B in terms of the parameters of the micro-
structure may be even more interesting. [The plots in Figs. 1–4 may be (consistent with the work of Hudson,
2000) rather linear, but a non-linear behaviour has indeed been observed in other computations, involving
higher values of the applied effective stress.] The theory and code we have developed may for example be
used (in the context of time-lapse seismics) to discriminate between large changes in pore pressure and fluid-
saturation during production (see Landrø, 2001; Koesoemadinata and McMechan, 2001), or (in the related
context of compaction) to simulate the seismic changes of pores that are deformed into cracks (see Ruud
et al., 2003). The next step may be to implement the theory for an applied effective stress which is not hydro-
static and/or to consider less trivial distributions of cavity orientations/shapes (see Tod, 2002).
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Appendix A. Evaluation of the tensors G(r) and G
(rs)
d

It is clear from Eq. (8) and the work of Torquato (2002) that the tensor G(r) is given by
GðrÞ ¼ �SðrÞ : Sð0Þ; ðA:1Þ

where S(r) is the so-called Eshelby (1957) tensor of the ellipsoid. Eshelby�s tensor is generally given in terms
of elliptic integrals of the first and second kinds (Mura, 1982).

In the case an isotropic matrix material containing spheroidal inclusions with semiaxes aðrÞ1 ¼ aðrÞ2 ¼ ar
and aðrÞ3 ¼ br and whose symmetry axis is aligned in the x3-direction, the elliptic integrals can be evaluated
analytically (Mura, 1982).

If the matrix material is isotropic then the components of SðrÞ
ijkl are given by (Torquato, 2002)
SðrÞ
1111 ¼ SðrÞ

2222 ¼
3

8ð1� mÞ
a2
r

a2
r � 1

þ 1

4ð1� mÞ 1� 2m � 9

4ða2
r � 1Þ
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 �
q
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;

ðA:2Þ
where m is the Poisson ratio of the matrix, ar = br/ar is the aspect ratio of the rth spheroid, and q is given
by
q ¼ ar

ð1� a2
r Þ

3=2
½cos�1ar � arð1� a2

r Þ
1=2�; ðA:3Þ
when ar 6 1.
From these results, we see that for spheres (ar = 1, q = 2/3),
SðrÞ
ijkl ¼

5m � 1

15ð1� mÞ dijdkl þ
4� 5m

15ð1� mÞ ðdikdjl þ dildjkÞ: ðA:4Þ
If r refers to a typical flat compliant Hudson-crack (characterized by ar!0, q!0) then the only non-
vanishing components are
SðrÞ
3333 ¼ 1; SðrÞ

3311 ¼ SðrÞ
3322 ¼

m
1� m

; SðrÞ
1313 ¼ SðrÞ

2323 ¼
1

2
: ðA:5Þ
The above expressions for the G(r) tensor for a spheroidal inclusion can also be used to evaluate the GðrsÞ
d

tensor, provided that the aspect ratio aðrsÞ
d of the correlation function is taken to be identical with that of the

associated inclusion (see also Ponte Castaneda and Willis, 1995).
If the spheroidal inclusions are embedded in a matrix material which is no longer isotropic then one

needs to integrate a set of expressions over a finite range in order to evaluate the G(r) tensor. In principle,
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the G(r) tensor can be computed for inclusions having any shape, but then one looses the simplicity of
Eshelby�s ellipsoidal inclusions (e.g., Jakobsen et al., 2003a).
Appendix B. Evolution law for volume concentrations

If we denote by djX(r)j the (stress-induced) change in the volume jX(r)j of the ellipsoidal domain X(r) occu-
pied by a single inclusion (or cavity) of type r, then it follows from the definition of the strain tensor �ðrÞkk that
djXðrÞj
jXðrÞj

¼ d�ðrÞkk : ðB:1Þ
The results of Eshelby (1957), in conjunction with the concept of eigenstrain (e.g., Landau and Lifshitz,
1959), can be used to provide more justification to the above equation.

The total volume occupied by all inclusions is obviously given by
jXj ¼
XN
r¼1

nðrÞjXðrÞj; ðB:2Þ
where n(r) is the number of r-inclusions per unit volume. The above equation implies that
djXj ¼
XN
r¼1

nðrÞdjXðrÞj: ðB:3Þ
From Eqs. (B.1) and (B.3), we get
djXj ¼
XN
r¼1

nðrÞjXðrÞjd�ðrÞkk : ðB:4Þ
Thus,
djXj
jXj ¼

XN
r¼1

vðrÞd�ðrÞkk : ðB:5Þ
where
vðrÞ ¼ nðrÞjXðrÞj
jXj ; ðB:6Þ
as discussed (within the context of a statistical homogeneous system) by Jakobsen et al. (2003a).
It follows from the above equation that
dvðrÞ

vðrÞ
¼ djXðrÞj

jXðrÞj
� djXj

jXj ; ðB:7Þ
where the last term on the right-hand side represents a correction factor taking into account the fact that
the total volume of a representative volume element is also changing when the system is subjected to an
applied effective stress.

Combining Eqs. (B.1), (B.5) and (B.7), we finally get
dvðrÞ

vðrÞ
¼ d�ðrÞkk �

XN
s¼1

vðsÞd�ðsÞkk : ðB:8Þ
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